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Abstract

Inverse Reinforcement Learning (IRL) is the problem of inferring a reward function
from an observed optimal behavior in a Markov Decision Process (MDP) [12].
However, the idea of deriving a reward function from a learning agent has not
been extensively explored. This paper examines this question within the Inverse
Bandit context [6], which focuses on estimating the expected rewards of a multi-
armed bandit (MAB) instance by observing the actions of a demonstrator algorithm.
Despite some recent efforts to address this issue [6, 5], many questions remain
open, and we aim to highlight some of them in this work.

1 Introduction

Inverse Reinforcement Learning (IRL) is the problem of inferring a reward function from an observed
optimal behavior in a Markov Decision Process (MDP) [12], such as expert’s trajectories (or demon-
strations). Over the past decade, IRL has attracted much interest in the machine learning and control
theory communities, and different methods have been proposed, e.g. the ones employing Bayesian
inference [14] or the principle of Maximum-entropy [17].

IRL is an ill-posed problem: the reward function that explains the expert’s behavior is not unique
in general and it is possible to show that the feasible reward set contains infinitely many reward
functions [10]. Consequently, research on reward identifiability [11, 3, 9, 16] has emphasized the
importance of incorporating more exploration in the expert’s trajectories.

Despite this, most of the IRL literature considers demonstrations generated by an optimal policy.
Although some work has incorporated sub-optimal experts [13, 2], there has been little research on
considering learning experts, i.e. whose policy evolves over time, as they collect data.

Some initial steps in this directions have been made on the Inverse Bandit problem, which was
formally introduced by Guo et al. [6]. This concerns estimating the expected rewards of a multi-
armed bandit (MAB) instance solely from observing the actions of a demonstrator algorithm. It is
important to note that in MAB, the identifiability issue from optimal demonstrations is particularly
acute. Suppose you can observe someone playing UCB [1] on a K-armed bandit problem. It is well
known that, after some time, higher value arms should be played more often [8], making it relatively
easy to identify which are the sub-optimal arms. However, can the sub-optimality gaps be recovered?
This question is partially positively answered by Guo et al. [6], and the subsequent work by Guha
et al. [5] in the stochastic linear bandits setting. Yet, there are still unresolved questions, and the
purpose of this paper is to raise some of them.

Guo et al. [6] propose a procedure that estimates rewards for each sub-optimal arm and they provide
theoretical guarantees on the estimation error. However, this procedure requires to know the exact
algorithm that generated the demonstration. Sadly, for technical reasons, the latter is not a widely
used algorithm but a modified version of standard UCB that results in a higher regret.
Question 1: Can we define a reward estimation procedure that yields good results even with
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trajectories generated by commonly used algorithms, e.g. vanilla UCB?
Question 2: Is it possible to design a procedure that estimates rewards without knowing the algorithm
that generated the trajectories?
Other natural questions concern the sample complexity of the problem that we will formalize in
Section 4.2 together with preliminary results. Ultimately, our goal is to highlight the remaining
challenges and stimulate interest within the community.

2 Background and notation

Let us recall the standard notation for the MAB problem [8]. We can define a stochastic bandit as
a collection of distributions ν = (Pi : i ∈ [K]), where [K] := {1, 2, . . . ,K} is the set of available
actions (or bandit arms). The learner and the environment interact over a horizon of T rounds. At
each round t ∈ {1, . . . , T} the learner chooses an action At ∈ [K], then the environment samples a
reward Xt ∈ R from the distribution Pi and reveals it to the learner. For each arm i ∈ [K] we denote
µi := EX∼νi

[X] its expected reward. Define Ti(t) :=
∑t

s=1 1(As = i), as the number of times arm
i has been pulled by the learner. Assume that there is a unique best arm or optimal arm that can be
identified as i∗ := arg maxi∈[K]µi. Therefore, we refer to the remaining arms, i.e. i ∈ [K]\{i∗}, as
sub-optimal. For each sub-optimal arm the sub-optimality gap is defined as ∆i := µ∗ − µi, where
µ∗ := µi∗ is the expected reward of the optimal arm. The learner’s goal is to minimize the regret, i.e.
the difference between the best possible reward she could obtain, if she knew which is the optimal
arm, and the actual accumulated reward. We say that a no-regret algorithm is one whose regret scales
sub-linearly with the horizon T . One of the most common algorithm that obtain sub-linear regret is
Upper-Confidence-Bound (UCB) [1] or its anytime version Asymptotically Optimal UCB [7].

2.1 Problem statement

Inverse Bandits [6] is the problem of estimating the rewards of a MAB instance from observing only
the actions of a demonstrator algorithm. More formally, we can define a trajectory (or demonstration)
as a sequence of actions {At}Tt=1, i.e. the sequence of arms pulled by the algorithm. Therefore, a
reward estimation procedure is a mapping from demonstrations to mean estimates µ̂i for each arm
i ∈ [K]. The goal is to minimize the expected estimation error for each arm i, i.e. E[|µ̂i − µi|]. We
will assume that the procedure knows the value of µ∗ but not the index i∗ as in [6]. Note that this
assumption does not change the problem. In fact, here the goal is the estimation of reward values as
opposed to identifying the best arm, that is a relatively straightforward problem instead.

3 State of the art

Guo et al. [6] studied Inverse Bandits and showed, under certain assumptions (see Theorem 1 in [6]),
the following information-theoretic lower bound on the estimation error given any reward estimation
procedure:

E[|µ̂i − µi|] ≥
1

16

(
1√

E[Ti(T )]
∧ 1

)
. (1)

It shows that the procedure’s efficacy in estimating µi is fundamentally limited by
√

E[Ti(T )],
highlighting the necessity of exploration, as observed in the IRL case.

However, not every demonstrator algorithm, that perhaps includes “enough” exploration, allow us to
match this lower bound. For instance, consider the Explore-Then-Commit algorithm [15]. It suffers
from a regret of O(T 2/3), thus constituting a no-regret algorithm. Despite this, it is impossible to
perform reward estimation by only observing trajectories generated by this algorithm. In practice, it
explores each arm a fixed number of times and then exploits the estimated best arm. Therefore, by
observing a trajectory, we can only identify the best arm, but it provides no information about the sub-
optimal ones. Hence, we can say that reward estimation is only possible when the learning algorithm
exhibits some type of instance-dependent behaviour. For this reason, the authors focused on two
families of algorithms with this characteristic: successive-arm-elimination (SAE) [4] and UCB [1].
Perhaps surprisingly, they use a slightly modified version of the algorithms to control exploration.
From now on, we will focus on the UCB family of algorithms, although similar conclusions could be
drawn for the SAE family. The version of UCB employed in Guo et al. [6] is obtained by defining
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the confidence intervals for each arm i at time t ∈ {1, . . . , T} as Ci,t :=
√

2(Tα−1)
αTi(t)

for α ∈ [0, 1).
This algorithm suffers from a regret of O(Tα). Note that for α → 0 the typical choice of confidence
intervals (vanilla UCB) is recovered. The authors justify this by stating that a higher value of α
inflates the confidence intervals, allowing for greater exploration. Although result (1) demonstrates
the necessity of exploration, in practice it is more common to observe trajectories generated by vanilla
UCB rather than this modified version.

3.1 The reward estimator

The main contribution of the paper [6] is the design of a reward estimation procedure (see Procedure
2 in [6]), along with providing theoretical guarantees on the expected estimation error. The procedure
takes as input one trajectory {A1, . . . , AT }, a scalar µ∗ and the α ∈ [0, 1) employed by the demon-
strator algorithm. It estimates the best arm as the most pulled one, i.e. î = argmaxi Ti(T ), then it
computes the switching round for every sub-optimal arm as follows:

τi := max{t : At = i and At′ = î for some t′ > t}. (2)

Finally, it estimates the rewards as:

µ̂i := µ∗ − (Ci,τi − Cî,τi
), ∀i ∈ [K]\{i∗}. (3)

Note that this procedure requires knowledge of the demonstrator algorithm, particularly the value of
α used. Under certain assumptions (see Theorem 2 in [6]) the authors prove that it exists an universal
constant C such that for any sub-optimal arm the procedure satisfies:

E[|µ̂i − µi|] ≤ C

√
log(E[Ti(T )]

√
K)

E[Ti(T )]
. (4)

Furthermore, E[Ti(T )] ≥ cT
α−1
α∆2

i
, for some other universal constant c > 0. While the theorem

indicates that a higher value of Ti(T ) leads to a smaller estimation error, it is important to acknowl-
edge that increased exploration of sub-optimal arms results in higher regret, a consequence that is
undesirable in practical applications.

4 Open problems

While an initial step has been taken in addressing the Inverse Bandit problem, numerous questions
remain unanswered. Here we will highlight some of them.

4.1 Demonstrator algorithm

The first open question concerns the algorithm employed to generate the demonstrations. In the
modified version of UCB used in [6], increasing the exploration rate (i.e., using a larger α) reduces the
estimation error (Figure 1a) obtained by the reward estimation procedure. However, this also increases
the regret for the demonstrator, as shown in Figure 1b. The estimation error here is measured as the
Mean Squared Error (MSE) E[|µi− µ̂i|2] for each sub-optimal arm. In practice, this modified version
of UCB is not as commonly used as the vanilla UCB, and the results from the reward estimation
procedure for α values closer to those in vanilla UCB are not as good as those for larger values of α
(see Figure 1a). Therefore, it would be useful to explore the following questions:

Question 1: Is it possible to implement a reward estimation procedure (or modify the existing one)
that achieves good results for the vanilla UCB, given that it is a commonly used algorithm for
generating trajectories?
Question 2: Would it be possible to develop a reward estimation procedure that does not require
prior knowledge of the generating algorithm but is adaptable to a set of different algorithms?

4.2 Sample complexity

Both Guo et al. [6] and Guha et al. [5] consider the process of estimating rewards by observing only
a single trajectory. Although they achieved strong theoretical bounds on the estimation error, they
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(a) Reward estimation (sub-optimal arm) for vari-
ous α. Results for 50 runs of simulations.

(b) Regret curves for different implementations of
UCB. Results for 100 runs of simulations.

Figure 1: In both cases we simulate a K = 2 armed bandit instance with Gaussian rewards distribution
X ∼ N (µi, 1), where µ1 = 1, µ2 = 0.5. Algorithms with smaller errors (left plot) result in much
higher regret (right plot).

also observed that a smaller error is linked with higher regret (see Corollary 1 in [6]).
Question 3: Can we mitigate this issue by incorporating additional trajectories? If so, what is the
trade-off between regret, estimation error and number of demonstrations?

We designed a straightforward procedure to include more trajectories: consider n trajectories D =
{τ1, . . . , τn}, then for each trajectory estimate the best arm as îj = argmaxi{Ti(T )}τj . Set î as
the arm that is considered the best in the majority of these trajectories. Next, remove from D the
trajectories for which îj ̸= î. Using the same method as Guo et al. [6] and considering î as the
optimal arm, estimate the rewards for each remaining trajectory. Finally, average these results to
obtain µ̂i for all i ∈ [K]. In Figure 2 we show the results of this procedure compared to those
obtained by observing a single trajectory. Note that increasing the number of trajectories leads to a
better estimation of the arm means, even within a shorter horizon, significantly reducing the variance.

Finally, we wonder how to efficiently collect data by designing an algorithm that queries only
the necessary number of trajectories for accurate reward estimation, in the spirit of Best Arm
Identification [4] and Active Exploration in IRL [9].
Question 4: Is it possible to design an algorithm that adaptively queries trajectories until the
estimation error is below a given threshold (ϵ > 0)?

(a) Mean value estimation for demonstrator algo-
rithm with α = 0.25.

(b) Mean value estimation for demonstrator algo-
rithm with α = 0.5.

Figure 2: In both cases we simulate a K = 2 armed bandit instance with Gaussian rewards distribution
X ∼ N (µi, 1), where µ1 = 1, µ2 = 0.5. The results are obtained over 100 simulations for different
values of α. The comparison is between the reward estimation procedure with 1 trajectory and 50
trajectories for the sub-optimal arm.
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